

Thermomechanical Behavior of a Wide Slab Casting Mold

Gavin J. Hamilton (BSME Student) Lance C. Hibbeler (Postdoctoral Fellow)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Introduction

- Previous work on thermomechanical behavior of continuous casting molds:
 - I. V. Samarasekera, D. L. Anderson, and J. K. Brimacombe, "The Thermal Distortion of Continuous-Casting Billet Molds." *Metallurgical Transactions B* 13:1 (1982), p. 91—104.
 - T. G. O'Connor and J. A. Dantzig, "Modeling the Thin-Slab Continuous-Casting Mold." *Metallurgical and Materials Transactions B* 25:3 (1994), p. 443—457.
 - B. G. Thomas, G. Li, A. Moitra, and D. Habing, "Analysis of Thermal and Mechanical Behavior of Copper Molds during Continuous Casting of Steel Slabs." *Iron & Steelmaker* 25:10 (1998), p. 91—104.
- Mold geometry has been shown to be important, but very few geometries have been investigated

Model Description

- Thermomechanical behavior of a wide slab caster mold and waterbox
- Due to symmetry, model only one quarter
- Create thermal model of narrow face and wide face copper plates
- Based on temperature results, create mechanical model of copper plates, associated water boxes, bolts, stiffener plates, and tie rods, with proper contact and clamping forces

Casting Conditions

Parameter	Value	Unit
Casting speed	1.092	m/min
Steel grade (peritectic)	0.21	wt. %C
Steel pour temperature	1532	°C
Steel liquidus temperature	1512	°C
Slab width	2464	mm
Slab thickness	158	mm
Meniscus (Below Top of Mold)	100	mm

Wide Face Copper Plate

- Height: 904 mm
- Width: 3350 mm
- Thickness: 42-42.5 mm
- Channel Depth: 22 mm
- Channel Width: 5 mm
- Channel Length: 848 mm
- Channel Spacing: 20.89 mm (center to center)
- Slalom channels around bolts and thermocouples
- Bottoms of channels are rounded

Gavin J. Hamilton

Narrow Face Copper Plate

Metals Processing Simulation Lab

• Height: 904 mm

University of Illinois at Urbana-Champaign

- Width: 157-158 mm
- Thickness: 45 mm
- Channel Depth: 22 mm
- Channel Width: 5 mm
- Channel Length: 848 mm
- Channel Spacing: 20.89 mm (center to center)
- Slalom channels around bolts
- Hole running along height acting as a water channel
- Bottoms of channels are rounded

8

Wide Face Water Box Assembly

- YZ Plate Thickness: 40 mm
- Width: 3580 mm
- Height: 902 mm
- Thickness: 405 mm
- Two stiffeners each composed of two welded pieces are welded on to the water box
- Two tie rods are attached to the holes in the water box

Narrow Face Water Box

• Width = 149 mm

University of Illinois at Urbana-Champaign

- Thickness = 100 mm
- Height = 956 mm
- Back Plate Thickness = 30 mm
- Back Plate Height = 640 mm

Heat Transfer Model Equations

26.0 26.5 27.0 27.5 28.0 28.5 Water HTC h_{water} (kW/(m² · K))

 $0.0 \ 0.5 \ 1.0 \ 1.5 \ 2.0 \ 2.5 \ 3.0 \ 3.5$

Heat Flux $q_{\rm hot}$ (MW/m²)

 $24 \ \ 26 \ \ 28 \ \ 30 \ \ 32 \ \ 34 \ \ 36$

Water Temperature T_{water} (°C)

Thermal Model Results

- Highest temperatures found around meniscus
- Hot face temperature increases near
 - Bolt holes
 - Thermocouple holes
 - Channels at mold exit
- Water boxes stay near ambient temperature
- Due to gap between the narrow and wide face molds (verified in mechanical model), heat flow between NF side and WF can be neglected

University of Illinois at Urbana-Champaign

Wide and Narrow Face Mold Temperatures at Center Line

WF Cu Temperature Variation

Extra spacing for bolts causes hotspots on WF with ΔT that varies down mold

- Δx is approximately 50 mm for all bolt holes
- Local variations will affect the shell growth although how much is not known

Casting

Bolt Details

Bolt	Threads	Torque (Nm)	Force (kN)	Pre-Stress (MPa)
Wide Face	M20x2.5	120	9.75	61.32
Narrow Face	M12x1.75	68	11.74	103.77
Upper Tie Rod			18.2	8.57
Lower Tie Rod			68.0	32.02

- · Bolts and tie rods are modeled as truss elements
- The truss elements were given a pre-stressed based on the table above
- μ_{thread} =0.16, μ_{head} =0.6, β =cos(30°)

$$F_{\text{bolt}} = \tau_{\text{bolt}} \left/ \left(\frac{\mu_{\text{thread}} \pi d_{\text{pitch}} + \beta p_{\text{thread}}}{\beta \pi d_{\text{pitch}} - \mu_{\text{thread}} p_{\text{thread}}} \frac{d_{\text{pitch}}}{2} + \mu_{\text{head}} \frac{d_{\text{head}}}{2} \right) \right.$$

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Thermal-Mechanical Models

- Molds have been modeled as

 - Elastic-plastic-creep Most appropriate
- Properties either constant or temperaturedependent, but always small-strain isotropic
 - Elastic modulus
 - Yield strength
 - Coefficient of thermal expansion

19

Gavin J. Hamilton

Model Verification Bimetallic Strip

Parameter	Value	Unit
Length	1000	mm
Temperature change	200	К
Copper		
Height	40	mm
Young's modulus	117.2	GPa
Poisson's ratio	0.181	
Expansion coefficient	18.0	um/m/K
Steel		
Height	100	mm
Young's modulus	200	GPa
Poisson's ratio	0.3	-
Expansion coefficient	16.5	um/m/K

Gavin J. Hamilton

•

Constraints to define contact between parts

0.2

0.4

0.6

0.8

800

900└ -1.0

-0.8

-0.6

-0.4

-0.2

Displacement, UT1 [mm]

0.0

- Investigated thermomechanical behavior of a wide slab casting mold
- Most thermal behavior is typical, but there are some anomalies of around 15°C near bolts
- The very rigid water boxes control the mold distortion, giving about 0.6 mm distortion on the NF and the WF about 0.7 mm towards the steel
- Next, look at effect of distortion on solidifying shell and operational practices such as clamping

Acknowledgments

 Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Tata Steel, Goodrich, Magnesita Refractories, Nucor Steel, Nippon Steel, Postech/ Posco, SSAB, ANSYS-Fluent)

tinuous Casting

University of Illinois at Urbana-Champaign

 National Center for Supercomputing Applications (NCSA), Blue Waters cluster

Metals Processing Simulation Lab

31

Gavin J. Hamilton